Evaluation of high resolution digital surface models for single tree extraction approaches in mixed forests

نویسندگان

  • MOHSEN MIRI
  • STEVEN BAYER
  • TILMAN BUCHER
چکیده

High resolution digital elevation models (DEM) are utilized in automatic extraction of single-trees in mixed forests. In this paper the digital surface models (DSM) provided from aerial images with resolutions of 8 cm and 20 cm and airborne laser scanning ALS data are investigated. The results showed a relative good representation of the tree crowns even in image-based DSM. However, increasing the resolution of imagery does not inevitably lead to better quality in DSM of forests. To evaluate the characteristics of deciduous and coniferous trees on such models, two features are introduced. The Inversed Quasi-Flatness (IQF) and the Averaged Height Variation (AHV) of the DSM are implemented on some automatically selected samples at the highest levels of elevation on nDSM to demonstrate the geometric and morphologic characteristics of the different DSMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning

The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013